

JOINT DEVELOPMENT OPPORTUNITY

Tunable Pyroelectric Infrared Detectors using Graphene and Interconnected Graphene Foams

TECHNOLOGY BACKGROUND

Infrared (IR) sensors are found in the industrial and research sectors, such as defence, quality control and inspection, surveillance, biomedical imaging and, in general, research and development. They rely on certain materials being able to capture variations in the infrared component of incident light. There are several problems with sensors in the market and this invention addresses the problems effectively.

Sensors in the market offer degraded performances in response time, sensitivity and high costs. High resolution *Mercury Cadmium Telluride (MCT) photoconductive IR detectors* have to operate at around 70 K. Although another type of sensor, *microbolometers*, can work at room temperature, they suffer from low resolution, compared to photoconductive detectors, a result of thermal cross-talk effects. Finally, *pyroelectric IR sensors*, utilizing IR-reflective top electrodes, have lower sensitivities compared to the first

two types. This limitation is the direct result of the high reflectivity of the patterned top electrode. The often metallic surface of this electrode can also absorb IR, which also limits its tenability and flexibility.

PERFORMANCE

Source	Drawback 1 (<i>Advantage</i>)	Drawback 2 (<i>Advantage</i>)	Drawback 3 (Advantage)	Experimental data	
Bolometric IR detectors	A constant bias current needs to be passed through during operations	Accuracy is usually degraded due to thermal cross-talk	NA	NA	
Photoconductive IR sensors	Materials used, e.g. mercury cadmium telluride and mercury zinc telluride are difficult to grow in controlled manner	Need for low operating temperatures Need for a constant bias current		NA	
Non-graphene Pyroelectric sensors	High reflectivity of the metallic top electrode reduces the effective flux of incident light	When specific IR-absorbing materials, e.g. NiCr alloys, are used, their predefined absorption spectra limit the wavelengths absorbed.	NA	NA	
Graphene- pyroelectric IR sensor (lab conditions)	(Significant improvement in detection rate, spatial and time resolution)	(High sensitivity, greater tunability, utilizing less power)	(Greater flexibility, compatible with pixelation)	Highest signal @ blackbody temperature (1200 °C), chopping freq (33 Hz). Peak SNR: 75 dB at 1200 °C, 183 Hz. Specific detectivity _{max} : 7.42 x 10 ⁶ cmHz ^{1/2} /W @100°C, 183 Hz	

APPLICATION AREAS

Low Cost	Low Cost	Defense	Quality control	Biomedical and	Surveillance	Research and
spectrometer	flexible sensors		and inspection	diagnosis	and security	development
like multi-						
channel FTIR						
Gas sensing,	Gas sensing and	Infrared sensors	Heat monitoring	Differentiation	Human motion	Photonic
quality	identification,	for night vision	of circuit boards	or detection of	detectors, low	sensors in
assurance	thermal and	apparatus,	& components,	malignancy in	visibility (e.g.	optical
systems, rapid	infrared sensors	onboard	mechanical	tissues,	firefighting)	measurement
substance	in textiles,	detectors for	metrology, i.e.	monitoring or	apparatus,	devices
identification	watches and	thermal tracking	monitoring of	detection of	volcano	
for cross-border	cellphones	based missiles	thermal	stress fractures,	surveillance	
controls and		and weaponry,	degradation and	sensing of		
military		counteractive	structural	pandemics		
purposes		interception	defects in			
		based systems	buildings, cars			
		for combustible	and other			
		propellant	temperature			
		munition	sensitive			
			applications			

CONTACT: oiiquery@nus.edu.sg and +65 66013763